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Introduction 1

rinohtype was initially conceived as a modern replacement for LaTeX. An important goal in the
design of rinohtype is for documents to be much easier to customize than in LaTeX. By today’s
standards, the arcane TeX macro language upon which LaTeX is built makes customization
unnecessarily difficult for one. Simply being built with Python makes rinohtype already much
easier to approach than TeX. Additionally, rinohtype is built around the following core concepts
to ensure customizability:
Document Templates

These determine the page layout and (for longer documents) the different parts of your
document. The templates included with rinohtype are highly configurable and allow
changing margins, headers, footers, chapter titles, etc. If this is not sufficient, a custom
template can be created.

Style Sheets
The CSS-inspired style sheets determine the look of individual document elements. A style
sheet assigns style attributes to each type of document element. For example, a paragraph’s
style is determined by the typeface, font weight, size and color, horizontal alignment of text
etc.

Structured Input
rinohtype renders a document from a document tree that does not describe any style
aspects but only semantics. The style sheet maps specific style properties to the elements in
this document tree. The document tree can be automatically generated from a structured
document format such as reStructuredText and CommonMark using one of the included
frontends, or it can be constructed manually.

rinohtype is implemented as a Python package and doubles as a high-level PDF library. Its
modular design makes it easy to to customize and extend for specific applications. Moreover,
because rinotype’s source code is open, all of its internals can be inspected and even modified,
making it customizable at all levels.

1.1 Usage Examples

rinohtype supports three modes of operation, which are discussed in more detail in the Chapter
3 guide. For each of these modes, you can choose to use one of the document templates
included with rinohtype or a third-party template available from PyPI and optionally customize
it to your needs. Or you can create a custom template from scratch. The same is true for the style
sheet used to style the document elements.

1.1.1 Command-Line Renderer

rinohtype includes the rinoh command-line tool which renders structured text documents.
Currently, reStructuredText and CommonMark documents are supported in the open-source
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version. Support for DITA is available in the commercially supported Pro version.
Rendering the reStructuredText demonstration article demo.txt (using the standard article
template and style sheet) generates demo.pdf.

1.1.2 Sphinx Builder

Configuring rinohtype as a builder for Sphinx allows rendering a Sphinx project to PDF without
the need for a LaTeX installation. The very document you are reading was rendered using rino-
htype’s Sphinx builder.

1.1.3 High-level PDF library

rinohtype can also be used as a Python library to generate PDF documents. Just like with rinoh
and the Sphinx builder, you can select which document template and style sheet to use.
Additionally, you need to supply a document tree. This document tree can be parsed from a
structured document format such as reStructuredText by using one of the provided frontends or
built manually using building blocks provided by rinohtype. You can also write a frontend for a
custom format such as an XML dialect.
All of these approaches allow for parts of the content to be fetched from a database or other data
sources. When parsing the document tree from a structured document format, a templating
engine like Jinja2 can be used.

Todo

sample documents

6 Chapter 1   Introduction

http://dita.xml.org/standard
http://docutils.sourceforge.net/docs/user/rst/demo.txt
../tests_regression/reference/demo.pdf
http://jinja.pocoo.org


Installation 2

rinohtype supports Python 3.3 and up. Use pip to install the latest version of rinohtype and its
dependencies:

pip install rinohtype

If you plan on using rinohtype as an alternative to LaTeX, you will want to install Sphinx as
well:

pip install Sphinx

See Section 3.2 in the Chapter 3 guide on how to render Sphinx documents with rinohtype.

2.1 Dependencies

For parsing reStructuredText and CommonMark documents, rinohtype depends on docutils
and recommonmark respectively. pip takes care of these requirements automatically when you
install rinohtype.
If you want to include images other than PDF, PNG or JPEG, you need to install Pillow addition-
ally.
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Quickstart 3

This section gets you started quickly, discussing each of the three modes of operation intro-
duced in Chapter 1. If you want to customize the style of the PDF document, please refer to
Chapter 4 which introduces style sheets and document templates.

3.1 Command-Line Renderer

Installing rinohtype places the rinoh script in the PATH. This can be used to render structured
documents such as demo.txt (reStructuredText):

rinoh --format reStructuredText demo.txt

After rendering finishes, you will find demo.pdf alongside the input file.
rinoh allows specifying the document template and style sheet to use when rendering the
reStructuredText document. See its command-line options for details.
Two rendering passes are required to make sure that cross-references to page numbers are
correct. After a document has been rendered, rinohtype will save the page reference data to a
.rtc file. Provided the document (or the template or style sheet) doesn’t change a lot, this can
prevent the need to perform a second rendering pass.

3.2 Sphinx Builder

If your Sphinx project is already configured for the LaTeX builder, rinohtype will happily inter-
pret latex_documents. Otherwise, you need to set the rinoh_documents configuration option:

rinoh_documents = [dict(doc='index',        # top-level file (index.rst)
                        target='manual')]   # output file (manual.pdf)

The dictionary accepts optional keys in addition to the required doc and target keys. See
sphinx_builder for details.
When building the documentation, select the rinoh builder by passing it to the sphinx-build -b
option:

sphinx-build -b rinoh . _build/rinoh

Note that, just like the rinoh command line tool, the Sphinx builder requires two rendering
passes.
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3.3 High-level PDF Library

Note

The focus of rinohtype development is currently on the rinoh tool and Sphinx builder. Use as a
Python library is possible, but documentation may be lacking. Please be patient.

The most basic way to use rinohtype in an application is to hook up an included frontend, a
document template and a style sheet:

from rinoh.frontend.rst import ReStructuredTextReader
from rinoh.templates import Article

# the parser builds a rinohtype document tree
parser = ReStructuredTextReader()
with open('my_document.rst') as file:
    document_tree = parser.parse(file)

# render the document to 'my_document.pdf'
document = Article(document_tree)
document.render('my_document')

This basic application can be customized to your specific requirements by customizing the
document template, the style sheet and the way the document’s content tree is built. The basics
of document templates and style sheets are covered in later sections.
The document tree returned by the ReStructuredTextReader in the example above can also be
built manually. A DocumentTree is simply a list of Flowables, which can have child elements.
These children in turn can also have children, and so on; together they form a tree.
Here is an example document tree of a short article:

from rinoh.document import DocumentTree
from rinoh.styleds import *

document_tree = DocumentTree(
                    [Paragraph('My Document', style='title'), # metadata!
                     Section([Heading('First Section'),
                              Paragraph('This is a paragraph with some '
                                        + StyledText('emphasized text',
                                                     style='emphasis')
                                        + ' and an '
                                        + InlineImage('image.pdf')),
                              Section([Heading('A subsection'),
                                       Paragraph('Another paragraph')
                                      ])
                             ]),
                     Section([Heading('Second Section'),
                              List([Paragraph('a list item'),
                                    Paragraph('another list item')
                                   ])
                             ])
                    ])

It is clear that this type of content is best parsed from a structured document format such as
reStructuredText or XML. Manually building a document tree is well suited for short, custom
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documents however.
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1 see Supported INI File Structure in configparser

Basic Document Styling 4

rinohtype allows for fine-grained control over the style of its output. Most aspects of a docu-
ment’s style can be controlled by style sheet files and template configuration files which are
being introduced in this chapter. These files are plain text files that are easy to create, read and
modify.

4.1 Style Sheets

A style sheet defines the look of each element in a document. For each type of document
element, the style sheet assign values to the style properties available for that element. Style
sheets are stored in plain text files using the Windows INI1 format with the .rts extension. Below
is an excerpt from the sphinx_stylesheet included with rinohtype.

[STYLESHEET]
name=Sphinx
description=Mostly a copy of the LaTeX style included with Sphinx
pygments_style=friendly

[VARIABLES]
mono_typeface=TeX Gyre Cursor
serif_typeface=TeX Gyre Pagella
sans_typeface=Tex Gyre Heros
fallback_typeface=DejaVu Serif
thin_black_stroke=0.5pt,#000
blue=#20435c

[default:Paragraph]
typeface=$(serif_typeface)
font_weight=REGULAR
font_size=10pt
line_spacing=fixed(12pt, leading(0))
indent_first=0
space_above=0
space_below=0
text_align=JUSTIFY
kerning=True
ligatures=True
hyphen_lang=en_US
hyphen_chars=4

[fallback]
typeface=$(fallback_typeface)
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[body]
base=default
space_above=5pt
space_below=0
text_align=justify

[emphasis]
font_slant=italic

[strong]
font_weight=BOLD

[literal emphasis]
base=emphasis
typeface=$(mono_typeface)
hyphenate=False
ligatures=False

[literal strong]
base=strong
typeface=$(mono_typeface)
hyphenate=False
ligatures=False

[inline math]
base=monospaced

[quote]
font_slant=italic

Except for [STYLESHEET] and [VARIABLES], each configuration section in a style sheet deter-
mines the style of a particular type of document element. The emphasis style, for example,
determines the look of emphasized text, which is displayed in an italic font. This is similar to
how HTML’s cascading style sheets work. In rinohtype however, document elements are identi-
fied by means of a descriptive label (such as emphasis) instead of a cryptic selector. rinohtype
also makes use of selectors, but these are collected in a Section 5.3 which maps them to descrip-
tive names to be used by many style sheets. Unless you are using rinohtype as a PDF library to
create custom documents, the default matcher should cover your needs.
The following two subsections illustrate how to extend an existing style sheet and how to create
a new, independent style sheet. For more in-depth information on style sheets, please refer to
Chapter 5.

4.1.1 Extending an Existing Style Sheet

Starting from an existing style sheet, it is easy to make small changes to the style of individual
document elements. The following style sheet file is based on the Sphinx stylesheet included
with rinohtype.

[STYLESHEET]
name=My Style Sheet
description=Small tweaks made to the Sphinx style sheet
base=sphinx

[VARIABLES]
mono_typeface=Courier
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[emphasis]
font_color=#00a

[strong]
base=DEFAULT_STYLE
font_color=#a00

By default, styles defined in a style sheet extend the corresponding style from the base style
sheet. In this example, emphasized text will be set in an italic font (as configured in the base
style sheet) and colored blue (#00a).
It is also possible to completely override a style definition. This can be done by setting the base
of a style definition to DEFAULT_STYLE as illustrated by the strong style. This causes strongly
emphasised text to be displayed in red (#a00) but not in a bold font as was defined in the base
style sheet (the default for font_weight is Medium; see TextStyle). Refer to default_matcher to
find out which style attributes are accepted by each style (by following the hyperlink to the style
class’s documentation).
The style sheet also redefines the mono_typeface variable. This variable is used in the base style
sheet in all style definitions where a monospaced font is desired. Redefining the variable in the
derived style sheet affects all of these style definitions.

4.1.2 Starting from Scratch

If you don’t specify a base style sheet in the [STYLESHEET] section, you create an independent
style sheet. You should do this if you want to create a document style that is not based on an
existing style sheet. If the style definition for a particular document element is not included in
the style sheet, the default values for its style properties are used.

Todo

specifying a custom matcher for an INI style sheet
Unless a custom StyledMatcher is passed to StyleSheetFile, the default matcher is used.
Providing your own matcher offers even more customizability, but it is unlikely you will need
this. See Section 5.3.

Note

In the future, rinohtype will be able to generate an empty INI style sheet, listing all styles
defined in the matcher with the supported style attributes along with the default values as
comments. This generated style sheet can serve as a good starting point for developing a custom
style sheet from scratch.

4.2 Document Templates

As with style sheets, you can choose to make use of a template provided by rinohtype and
optionally customize it or you can create a custom template from scratch. This section discusses
how you can configure an existing template. See Chapter 6 on how to create a custom template.

4.2.1 Configuring a Template

rinohtype provides a number of standard_templates. These can be customized by means of a
template configuration file; a plain text file in the INI1 format with the .rtt extension. Here is an
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example configuration for the article template:

[TEMPLATE_CONFIGURATION]
name = my article configuration
template = article

parts =
    title
    ;front_matter
    contents
stylesheet = sphinx_base14
language = fr
abstract_location = title

[SectionTitles]
contents = 'Contents'

[AdmonitionTitles]
caution = 'Careful!'
warning = 'Please be warned'

[VARIABLES]
paper_size = A5

[title]
page_number_format = lowercase roman
end_at_page = left

[contents]
page_number_format = number

[title_page]
top_margin = 2cm

The TEMPLATE_CONFIGURATION sections collects global template options. Set name to
provide a short label for your template configuration. template identifies the document template
to configure.
All document templates consist of a number of document parts. The Article template defines
three parts: title, front_matter and contents. The order of these parts can be changed (although
that makes little sense for the article template), and individual parts can optionally be hidden by
setting the parts configuration option. The configuration above hides the front matter part (com-
mented out using a semicolon), for example.
The template configuration also specifies which style sheet is used for styling document
elements. The DocumentTemplate.stylesheet option takes the name of an installed style sheet
(see rinoh --list-stylesheets) or the filename of a stylesheet file (.rts).
The language option sets the default language for the document. It determines which language
is used for standard document strings such as section and admonition titles.
The Article template defines two custom template options. The abstract_location option deter-
mines where the (optional) article abstract is placed, on the title page or in the front matter part.
table_of_contents allows hiding the table of contents section. Empty document parts will not be
included in the document. When the table of contents section is suppressed and there is no
abstract in the input document or abstract_location is set to title, the front matter document part
will not appear in the PDF.
The standard document strings configured by the language option described above can be over-
ridden by user-defined strings in the SectionTitles and AdmonitionTitles sections of the configu-
ration file. For example, the default title for the table of contents section (Table of Contents) is
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replaced with Contents. The configuration also sets custom titles for the caution and warning
admonitions.
The others sections in the configuration file are the VARIABLES section, followed by document
part and page template sections. Similar to style sheets, the variables can be referenced in the
template configuration sections. Here, the paper_size variable is set, which is being referenced
by by all page templates in Article (although indirectly through the page base page template).
For document part templates, page_number_format determines how page numbers are format-
ted. When a document part uses the same page number format as the preceding part, the
numbering is continued.
The DocumentPartTemplate.end_at_page option controls at which page the document part
ends. This is set to left for the title part in the example configuration to make the contents part
start on a right page.
Each document part finds page templates by name. They will first look for specific left/right
page templates by appending _left_page or _right_page to the document part name. If these
page templates have not been defined in the template, it will look for the more general <docu-
ment part name>_page template. Note that, if left and right page templates have been defined
by the template (such as the book template), the configuration will need to override these, as
they will have priority over the general page template defined in the configuration.
The example configuration only adjusts the top margin for the TitlePageTemplate, but many
more aspects of the page templates are configurable. Refer to standard_templates for details.

Todo

base for part template?

4.2.2 Using a Template Configuration File

A template configuration file can be specified when rendering using the command-line rinoh
tool by passing it to the --template command-line option. When using the Sphinx_builder, you
can set the rinoh_template option in conf.py.
To render a document using this template configuration programatically, load the template file
using TemplateConfigurationFile:

import sys
from pathlib import Path

from rinoh.frontend.rst import ReStructuredTextReader
from rinoh.template import TemplateConfigurationFile

# the parser builds a rinohtype document tree
parser = ReStructuredTextReader()
with open('my_document.rst') as file:
    document_tree = parser.parse(file)

# load the article template configuration file
script_path = Path(sys.path[0]).resolve()
config = TemplateConfigurationFile(script_path / 'my_article.rtt')

# render the document to 'my_document.pdf'
document = config.document(document_tree)
document.render('my_document')

The TemplateConfigurationFile.document() method creates a document instance with the
template configuration applied. So if you want to render your document using a different
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template configuration, it suffices to load the new configuration file.
Refer to the Article documentation to discover all of the options accepted by it and the docu-
ment part and page templates.
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Element Styling 5

This section describes how styles defined in a style sheet are applied to document elements.
Understanding how this works will help you when designing a custom style sheet.
rinohtype’s style sheets are heavily inspired by CSS, but add some additional functionality.
Similar to CSS, rinohtype makes use of so-called selectors to select document elements in the
document tree to style. Unlike CSS however, these selectors are not directly specified in a style
sheet. Instead, all selectors are collected in a matcher where they are mapped to descriptive
labels for the selected elements. A style sheet assigns style properties to these labels. Besides the
usefulness of having these labels instead of the more cryptic selectors, a matcher can be reused
by multiple style sheets, avoiding duplication.

Note

This section currently assumes some Python or general object-oriented programming knowl-
edge. A future update will move Python-specific details to another section, making things more
accessible for non-programmers.

5.1 Document Tree

A Flowable is a document element that is placed on a page. It is usually a part of a document
tree. Flowables at one level in a document tree are rendered one below the other.
Here is schematic representation of an example document tree:

|- Section
|   |- Paragraph
|   \- Paragraph
\- Section
    |- Paragraph
    |- List
    |   |- ListItem
    |   |   |- Paragraph (item label; a number or bullet symbol)
    |   |   \- StaticGroupedFlowables (item body)
    |   |       \- Paragraph
    |   \- ListItem
    |       \- Paragraph
    |   |   \- StaticGroupedFlowables
    |   |       \- List
    |   |           |- ListItem
    |   |           |   \- ...
    |   |           \- ...
    \- Paragraph
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This represents a document consisting of two sections. The first section contains two para-
graphs. The second section contains a paragraph followed by a list and another paragraph. All
of the elements in this tree are instances of Flowable subclasses.
Section and List are subclasses of GroupedFlowables; they group a number of flowables. In the
case of List, these are always of the ListItem type. Each list item contains an item number
(ordered list) or a bullet symbol (unordered list) and an item body. For simple lists, the item
body is typically a single Paragraph. The second list item contains a nested List.
A Paragraph does not have any Flowable children. It is however the root node of a tree of inline
elements. This is an example paragraph in which several text styles are combined:

Paragraph
 |- SingleStyledText('Text with ')
 |- MixedStyledText(style='emphasis')
 |   |- SingleStyledText('multiple ')
 |   \- MixedStyledText(style='strong')
 |       |- SingleStyledText('nested ')
 |       \- SingleStyledText('styles', style='small caps')
 \- SingleStyledText('.')

The visual representation of the words in this paragraph is determined by the applied style
sheet. Read more about how this works in the next section.
Besides SingleStyledText and MixedStyledText elements (subclasses of StyledText), paragraphs
can also contain InlineFlowables. Currently, the only inline flowable is InlineImage.
The common superclass for flowable and inline elements is Styled, which indicates that these
elements can be styled using the style sheets.

5.2 Selectors

Selectors in rinohtype select elements of a particular type. The class of a document element
serves as a selector for all instances of the class (and its subclasses). The Paragraph class is a
selector that matches all paragraphs in the document, for example:

Paragraph

As with CSS selectors, elements can also be matched based on their context. For example, the
following matches any paragraph that is a direct child of a list item or in other words, a list item
label:

ListItem / Paragraph

Python’s ellipsis can be used to match any number of levels of elements in the document tree.
The following selector matches paragraphs at any level inside a table cell:

TableCell / ... / Paragraph

To help avoid duplicating selector definitions, context selectors can reference other selectors
defined in the same Section 5.3 using SelectorByName:

SelectorByName('definition term') / ... / Paragraph

Selectors can select all instances of Styled subclasses. These include Flowable and StyledText,
but also TableSection, TableRow, Line and Shape. Elements of some of the latter classes only
appear as children of other flowables (such as Table).
Similar to a HTML element’s class attribute, Styled elements can have an optional style attribute
which can be used when constructing a selector. This one selects all styled text elements with
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2 Indexing a list like this lst[slice(0, None, 2)] is equivalent to lst[0::2].

the emphasis style, for example:

StyledText.like('emphasis')

The Styled.like() method can also match arbitrary attributes of elements by passing them as
keyword arguments. This can be used to do more advanced things such as selecting the back-
ground objects on all odd rows of a table, limited to the cells not spanning multiple rows:

TableCell.like(row_index=slice(0, None, 2), rowspan=1) / TableCellBackground

The argument passed as row_index is a slice object that is used for extended indexing2. To make
this work, TableCell.row_index is an object with a custom __eq__() that allows comparison to a
slice.
Rinohtype borrows CSS’s concept of specificity to determine the “winning” selector when
multiple selectors match a given document element. Each part of a selector adds to the speci-
ficity of a selector. Roughly stated, the more specific selector will win. For example:

ListItem / Paragraph                      # specificity (0, 0, 0, 0, 2)

wins over:

Paragraph                                 # specificity (0, 0, 0, 0, 1)

since it matches two elements instead of just one.
Specificity is represented as a 5-tuple. The last four elements represent the number of location
(currently not used), style, attribute and class matches. Here are some selectors along with their
specificity:

StyledText.like('emphasis')               # specificity (0, 0, 1, 0, 1)
TableCell / ... / Paragraph               # specificity (0, 0, 0, 0, 2)
TableCell.like(row_index=2, rowspan=1)    # specificity (0, 0, 0, 2, 1)

Specificity ordering is the same as tuple ordering, so (0, 0, 1, 0, 0) wins over (0, 0, 0, 5, 0) and (0,
0, 0, 0, 3) for example. Only when the number of style matches are equal, the attributes match
count is compared and so on.
In practice, the class match count is dependent on the element being matched. If the class of the
element exactly matches the selector, the right-most specificity value is increased by 2. If the
element’s class is a subclass of the selector, it is only increased by 1.
The first element of the specificity tuple is the priority of the selector. For most selectors, the
priority will have the default value of 0. The priority of a selector only needs to be set in some
cases. For example, we want the CodeBlock selector to match a CodeBlock instance. However,
because CodeBlock is a Paragraph subclass, another selector with a higher specificity will also
match it:

CodeBlock                                 # specificity (0, 0, 0, 0, 2)
DefinitionList / Definition / Paragraph   # specificity (0, 0, 0, 0, 3)

To make sure the CodeBlock selector wins, we increase the priority of the CodeBlock selector by
prepending it with a + sign:

+CodeBlock                                # specificity (1, 0, 0, 0, 2)

In general, you can use multiple + or - signs to adjust the priority:

++CodeBlock                               # specificity (2, 0, 0, 0, 2)
---CodeBlock                              # specificity (-3, 0, 0, 0, 2)
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5.3 Matchers

At the most basic level, a StyledMatcher is a dictionary that maps labels to selectors:

matcher = StyledMatcher()
...
matcher['emphasis'] = StyledText.like('emphasis')
matcher['chapter'] = Section.like(level=1)
matcher['list item number'] = ListItem / Paragraph
matcher['nested line block'] = (GroupedFlowables.like('line block')
                                / GroupedFlowables.like('line block'))
...

Rinohtype currently includes one matcher which defines labels for all common elements in
documents:

from rinoh.stylesheets import matcher

5.4 Style Sheets

A StyleSheet takes a StyledMatcher to provide element labels to assign style properties to:

styles = StyleSheet('IEEE', matcher=matcher)
...
styles['strong'] = TextStyle(font_weight=BOLD)
styles('emphasis', font_slant=ITALIC)
styles('nested line block', margin_left=0.5*CM)
...

Each Styled has a Style class associated with it. For Paragraph, this is ParagraphStyle. These
style classes determine which style attributes are accepted for the styled element. Because the
style class can automatically be determined from the selector, it is possible to simply pass the
style properties to the style sheet by calling the StyleSheet instance as shown above.
Style sheets are usually loaded from a .rts file using StyleSheetFile. An example style sheet file is
shown in Section 4.1.
A style sheet file contains a number of sections, denoted by a section title enclosed in square
brackets. There are two special sections:

• [STYLESHEET] describes global style sheet information (see StyleSheetFile for details)
• [VARIABLES] collects variables that can be referenced elsewhere in the style sheet

Other sections define the style for a document elements. The section titles correspond to the
labels associated with selectors in the StyledMatcher. Each entry in a section sets a value for a
style attribute. The style for enumerated lists is defined like this, for example:

[enumerated list]
margin_left=8pt
space_above=5pt
space_below=5pt
ordered=true
flowable_spacing=5pt
number_format=NUMBER
label_suffix=')'
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Since this is an enumerated list, ordered is set to true. number_format and label_suffix are set to
produce list items labels of the style 1), 2), …. Other entries control margins and spacing. See
ListStyle for the full list of accepted style attributes.

Todo

base stylesheets are specified by name … entry points

5.4.1 Base Styles

It is possible to define styles which are not linked to a selector. These can be useful to collect
common attributes in a base style for a set of style definitions. For example, the Sphinx style
sheet defines the header_footer style to serve as a base for the header and footer styles:

[header_footer : Paragraph]
base=default
typeface=$(sans_typeface)
font_size=10pt
font_weight=BOLD
indent_first=0pt
tab_stops=50% CENTER, 100% RIGHT

[header]
base=header_footer
padding_bottom=2pt
border_bottom=$(thin_black_stroke)
space_below=24pt

[footer]
base=header_footer
padding_top=4pt
border_top=$(thin_black_stroke)
space_above=18pt

Because there is no selector associated with header_footer, the element type needs to be speci-
fied manually. This is done by adding the name of the relevant Styled subclass to the section
name, using a colon (:) to separate it from the style name, optionally surrounded by spaces.

5.4.2 Custom Selectors

It is also possible to define new selectors directly in a style sheet file. This allows making tweaks
to an existing style sheet without having to create a new StyledMatcher. However, this should be
used sparingly. If a great number of custom selectors are required, it is better to create a new
StyledMatcher
The syntax for specifying a selector for a style is similar to that when constructing selectors in a
Python source code (see Section 5.3), but with a number of important differences. A Styled
subclass name followed by parentheses represents a simple class selector (without context).
Arguments to be passed to Styled.like() can be included within the parentheses.

[special text : StyledText('special')]
font_color=#FF00FF

[accept button : InlineImage(filename='images/ok_button.png')]
baseline=20%
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Even if no arguments are passed to the class selector, it is important that the class name is
followed by parentheses. If the parentheses are omitted, the selector is not registered with the
matcher and the style can only be used as a base style for other style definitions (see Section
5.4.1).
As in Python source code, context selectors are constructed using forward slashes (/) and the
ellipsis (...). Another selector can be referenced in a context selector by enclosing its name in
single or double quotes.

[admonition title colon : Admonition / ... / StyledText('colon')]
font_size=10pt

[chapter title : LabeledFlowable('chapter title')]
label_spacing=1cm
align_baselines=false

[chapter title number : 'chapter title' / Paragraph('number')]
font_size=96pt
text_align=right

5.4.3 Variables

Variables can be used for values that are used in multiple style definitions. This example
declares a number of typefaces to allow easily replacing the fonts in a style sheet:

[VARIABLES]
mono_typeface=TeX Gyre Cursor
serif_typeface=TeX Gyre Pagella
sans_typeface=Tex Gyre Heros
thin_black_stroke=0.5pt,#000
blue=#20435c

It also defines the thin_black_stroke line style for use in table and frame styles, and a specific
color labelled blue. These variables can be referenced in style definitions as follows:

[code block]
typeface=$(mono_typeface)
font_size=9pt
text_align=LEFT
indent_first=0
space_above=6pt
space_below=4pt
border=$(thin_black_stroke)
padding_left=5pt
padding_top=1pt
padding_bottom=3pt

Another stylesheet can inherit (see below) from this one and easily replace fonts in the docu-
ment by overriding the variables.

5.4.4 Style Attribute Resolution

The style system makes a distinction between text (inline) elements and flowables with respect
to how attribute values are resolved.
Text elements by default inherit the properties from their parent. Take for example the emphasis
style definition from the example above. The value for style properties other than font_slant
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(which is defined in the emphasis style itself) will be looked up in the style definition corre-
sponding to the parent element, which can be either another StyledText instance, or a
Paragraph. If the parent element is a StyledText that neither defines the style attribute, lookup
proceeds recursively, moving up in the document tree.
For flowables, there is no fall-back to the parent’s style by default. A base style can be specified
explicitly however. If a style attribute is not present in a particular style definition, it is looked
up in the base style. This can help avoid duplication of style information and the resulting main-
tenance difficulties. In the following example, the unnumbered heading level 1 style inherits all
properties from heading level 1, overriding only the number_format attribute:

[heading level 1]
typeface=$(sans_typeface)
font_weight=BOLD
font_size=16pt
font_color=$(blue)
line_spacing=SINGLE
space_above=18pt
space_below=12pt
number_format=NUMBER
label_suffix=' '

[unnumbered heading level 1]
base=heading level 1
number_format=None

When a value for a particular style attribute is set nowhere in the style definition lookup hierar-
chy, its default value is returned. The default values for all style properties are defined in the
class definition for each of the Style subclasses.
For text elements, it is possible to override the default behavior of falling back to the parent’s
style. Setting base to the label of a TextStyle or ParagraphStyle prevents fallback to the parent
element’s style.
For flowables, base can be set to PARENT_STYLE to enable fallback, but this requires that the
current element type is the same or a subclass of the parent type, so it cannot be used for all
styles.

5.5 Style Logs

When rendering a document, rinohtype will create a style log. It is written to disk using the
same base name as the output file, but with a .stylelog extension. The information logged in the
style log is invaluable when debugging your style sheet. It tells you which style maps to each
element in the document.
The style log lists the document elements (as a tree) that have been rendered to each page, and
for each element all matching styles are listed together with their specificity. No styles are listed
when there aren’t any selectors matching an element and the default values are used. The
winning style is indicated with a > symbol. Styles that are not defined in the style sheet or its
base(s) are marked with an x. If none of the styles are defined, rinohtype falls back to using the
default style.
Here is an example excerpt from a style log:

...
  Paragraph('January 03, 2012', style='title page date')
       > (0,0,1,0,2) title page date
         (0,0,0,0,2) body
    SingleStyledText('January 03, 2012')
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---------------------------------- page 3 ----------------------------------
#### ChainedContainer('column1')
  DocumentTree()
    Section(id='structural-elements')             demo.txt:62 <section>
         > (0,0,0,1,2) chapter
      Heading('1 Structural Elements')            demo.txt:62 <title>
           > (0,0,0,1,2) heading level 1
             (0,0,0,0,2) other heading levels
          MixedStyledText('1 Structural Elements')
            SingleStyledText('1')
            MixedStyledText(' ')
              SingleStyledText(' ')
            SingleStyledText('Structural Elements')
      Paragraph('A paragraph.')                   demo.txt:64 <paragraph>
           > (0,0,0,0,2) body
        MixedStyledText('A paragraph.')
          SingleStyledText('A paragraph.')
      List(style='bulleted')                      demo.txt:66 <bullet_list>
           > (0,0,1,0,2) bulleted list
        ListItem()
             x (0,0,1,0,4) bulleted list item
             > fallback to default style
          ListItemLabel('•')
               > (0,0,1,0,6) bulleted list item label
                 (0,0,0,0,2) list item label
              MixedStyledText('•')
                SingleStyledText('')
                SingleStyledText('•')
          StaticGroupedFlowables()                demo.txt:66 <list_item>
               > (0,0,0,0,3) list item body
...
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Document Templates 6

When it is not possible to achieve a particular document style using one of the existing
templates and a custom template configuration, you can create a new template. A new template
is programmed in Python and therefor it is required that you are familiar with Python, or at
least with general object-oriented programming.

6.1 Subclassing a Template

If you need to customize a template beyond what is possible by configuration, you can subclass
a template class and override document part and page templates with custom templates. The
following example subclasses Article.

from rinoh.attribute import OverrideDefault
from rinoh.template import DocumentPartTemplate, PageTemplate
from rinoh.templates import Article

class BibliographyPartTemplate(DocumentPartTemplate):
    ...

class MyTitlePageTemplate(PageTemplate):
    ...

class MyArticle(Article):
    parts = OverrideDefault(['title', 'contents', 'bibliography'])

    # default document part templates
    bibliography = BibliographyPartTemplate()

    # default page templates
    title_page = MyTitlePageTemplate(base='page')
    bibliography_page = PageTemplate(base='page')

MyArticle extends the Article template, adding the extra bibliography document part, along
with the page template bibliography_page. The new document part is included in parts, while
also leaving out front_matter by default. Finally, the template also replaces the title page
template with a custom one.
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6.2 Creating a Custom Template

A new template can be created from scratch by subclassing DocumentTemplate, defining all
document parts, their templates and page templates.
The Article and Book templates are examples of templates that inherit directly from
DocumentTemplate. We will briefly discuss the article template. The Article template overrides
the default style sheet and defines the two custom template attributes discussed in Section 4.2.1.
The document parts title, front_matter and contents are listed the in parts attribute and part
templates for each are provided along with page templates:

class Article(DocumentTemplate):
    stylesheet = OverrideDefault(sphinx_article)
    table_of_contents = Attribute(Bool, True,
                                  'Show or hide the table of contents')
    abstract_location = Attribute(AbstractLocation, 'front matter',
                                  'Where to place the abstract')

    parts = OverrideDefault(['title', 'front_matter', 'contents'])

    # default document part templates
    title = TitlePartTemplate()
    front_matter = ArticleFrontMatter()
    contents = ContentsPartTemplate()

    # default page templates
    page = PageTemplate(page_size=Var('paper_size'))
    title_page = TitlePageTemplate(base='page',
                                   top_margin=8*CM)
    front_matter_page = PageTemplate(base='page')
    contents_page = PageTemplate(base='page')

The custom ArticleFrontMatter template reads the values for the two custom template attributes
defined in Article to determine which flowables are included in the front matter:

class ArticleFrontMatter(DocumentPartTemplate):
    toc_section = TableOfContentsSection()

    def _flowables(self, document):
        meta = document.metadata
        abstract_loc = document.get_option('abstract_location')
        if ('abstract' in meta
                and abstract_loc == AbstractLocation.FRONT_MATTER):
            yield meta['abstract']
        if document.get_option('table_of_contents'):
            yield self.toc_section

Have a look at the src/book for an example of a slightly more complex template that defines
separate templates for left and right pages.
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Frequently Asked Questions 7

Below is the start of a list of commonly encountered problems and solutions to them. You can
also find answers to usage questions on rinohtype on StackOverflow.
PDFs produced by rinohtype contain mostly empty pages. What’s up?

Old versions of some PDF viewers do not support the way rinohtype embeds fonts in a
PDF (see issue 2). PDF viewers that are known to be affected are:

• pre-37.0 Firefox’s built-in PDF viewer (pdf.js)
• pre-0.41 poppler-based applications such as Evince
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Contributing 8

Thank you for considering contributing to rinohtype! This document contains some general
information with respect to contributions. Please refer to DEVELOPING.rst for specific informa-
tion on running tests etc.

8.1 Contributor License Agreement

Please send your contributions by creating a pull request on GitHub. You will be asked to agree
to the contributor license agreement. Why, you might ask? In the past, I had plans to sell a
commercial version of rinohtype. This version would basically be the same as the open source
version, but with the addition of a closed-source backend for the DITA format. While I’m no
longer actively pursuing these plans at this point, I would like to keep this option open. In
combination with the Affero GPL, the CLA allows me to include contributions by others in this
commercial version while preventing others from releasing commercial closed-source versions
of rinohtype. Additionally, the CLA protects the project from legal risks. Since I’m no legal
expert, I adapted the contributor license agreement from Project Harmony. You can find a quick
summary and a detailed walkthrough of the license in the guide.

8.2 Coding guidelines

Please follow the coding style used in the existing codebase, which generally follows the PEP 8
style guide. Here are the most important rules the codebase conforms to:

• lines are wrapped at 80 columns
• 4 spaces indentation (no tabs)
• descriptive variable/function/class names (not shortened)
• imports are grouped into sections: standard library, external packages and rinohtype

modules
• minimize use of external dependencies
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3 If you install direnv, the virtual environment can be automatically activated when you enter the rinohtype reposi-
tory checkout (see the .envrc file).

Developing 9

This project makes use of tox to manage running tests and other tasks. The tests can be divided
into three categories: checks, unit tests and regression (integration) tests. tox.ini defines “envi-
ronments” that configure these tasks. Each of these are described in the next section. The unit
and regression tests make use of pytest.
The repository includes a Poetry pyproject.toml file to help you set up a virtual environment
with tox and other development dependencies. From the repository checkout root directory
execute:

poetry install

Poetry will create a virtual environment in .venv, which you can activate like this3:

source .venv/bin/activate

Now tox is available for running the tests. Starting tox without any arguments will run the
check, unit and regression environments. Refer to the next section for an overview of all envi-
ronments.

9.1 Tox Environments

The following environments execute unit tests and regression tests:
unit

Runs the unit tests.
regression

Runs integration/regression tests. Each of these tests render a tiny document (often a single
page) focusing on a specific feature, which means they also execute quickly. Their PDF
output is compared to a reference PDF that is known to be good.

longrunning (not maintained, broken)
Runs regressions tests that render larger documents. These tests take several minutes to
complete.

The other environments run checks, build documentation and build “binary” distributions for
Mac and Windows:
check

Performs basic checks; just poetry check at this point.
check-docs

Perform checks on the documentation source files using doc8 and sphinx-doctest. restview
can be useful when fixing syntax errors in README.rst, CHANGES.rst, …
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build-docs
Build the rinohtype documentation using Sphinx, both in HTML and PDF formats.

macapp (not maintained, broken?)
Build a stand-alone macOS application bundle using briefcase. This task can only be run on
macOS.

wininst (not maintained, broken?)
Build a stand-alone rinohtype installer for the Windows platform with the help of pynsist.
This task also can be run on other platforms than Windows.

Customization settings for doc8 and pytest are stored in setup.cfg.

9.2 Testing against multiple Python interpreter versions

Tox facilitates running tests on multiple Python interpreter versions. You can combine the test
environment names with a factor to execute them on a specific Python interpreter version. For
example, to run the unit tests on CPython 3.8:

tox -e unit-py38

While it is typically sufficient to test on a single Python version during development, it can be
useful to run tests on a set of Python versions before pushing your commits. Of course, this
requires these versions to be available on your machine. It is highly recommended you use
pyenv (or pyenv-win) to install and manage these. For example, to install CPython 3.8.1, you can
run:

pyenv install 3.8.1

and pyenv will download, build and install this version of CPython for you. pyenv will install
the different Python versions in an isolated location (typically under ~/.penv), so they will not
interfere with your system-default Python versions.
The file .python-version in the root of the repository specifies which Python versions pyenv
should make available whenever we are inside the repository checkout directory. The file lists
specific the versions of CPython rinohtype aims to support plus recent PyPy3 versions (ideally,
we should closely track the latest releases). The pyenv_install.py script can install these for you
(skipping any that are already installed).

9.3 Continuous integration

GitHub Actions automatically executes the tox environments when new commits are pushed to
the repository. The tox environments are run on Linux, macOS and Windows, and run the tests
on an array of Python versions to make sure that we don’t break any corner cases. See .github/-
workflows for details.

9.4 Making a release

This is a list of steps to follow when making a new release of rinohtype. Publishing the new
release to PyPI and uploading the documentation to GitHub Pages is handled by the GitHub
Actions workflow.

1 Make sure your checkout is clean.
2 Run run tests and checks locally:

tox -e check,check-docs,build-docs,unit,regression
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3 Push your commits to master on GitHub. Don’t create a tag yet!
4 Check whether all tests on GitHub Actions are green.
5 Set the release date.

• set __release_date__ in src/rinoh/__init__.py (YYYY-MM-DD)
• add release date to this release’s section (see other sections for examples)

6 Create a git tag: git tag v$(poetry version --short)
7 Push the new tag: git push origin v$(poetry version --short)
8 The GitHub workflow will run all tox environments and upload the new version to PyPI if

all checks were successful.
9 Create a new release on GitHub. Include the relevant section of the changelog. Use

previous releases as a template.
• Tag version: the release’s tag vx.y.z
• Release title: Release x.y.z (date)
• Add a link to the release on PyPI:

Install from [PyPI](https://pypi.org/project/rinohtype/x.y.z/)

• Copy the release notes from the change log

10 Bump version number and reset the release date to “upcoming”.
• poetry version patch  # or 'minor'
• add new section at the top of the changelog
• set __release_date__ in src/rinoh/__init__.py to 'upcoming'
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Release History 10

10.1 Release 0.5.2 (2021-02-24)

New Features:
• If the RINOH_SINGLE_PASS environment variable is set, rendering will be stopped after a

single pass. This speeds up iteration when tweaking style sheets or templates.
• Sphinx builder: the rinoh_targets configuration variable allows limiting the documents to a

subset of those listed in rinoh_documents.
• The ‘number_format’ style property can now also accept styled text strings which replace

the auto-numbered label.
• Document elements (Styled objects) can more easily be matched based on their ID (or

‘name’ in docutils terms) by means of the has_id selector property.

Changed:
• docutils/Sphinx frontend: will default to referencing targets by number if possible, even if

a custom label is explicitly set. This behaviour can be overridden in the style sheet by
setting the type style property to ‘custom’.

Fixed:
• Sphinx style sheet: the object description is always rendered to the right of the signature,

no matter how wide the signature is.
• Incorrect/useless warnings that popped up with release 0.5.1.

Part of the work included in this release was kindly sponsored by Joby Aviation.

10.2 Release 0.5.1 (2021-02-19)

New Features:
• Paragraphs can now be numbered. rinohtype also allows for referencing them by number,

but docutils/Sphinx doesn’t readily offer the means express that. A workaround for this
will be included in a future release.

Fixed:
• Fix issues with metadata (title, author) stored in the PDF Info dictionary
• Fix handling of no-break spaces (they were rendered using the fallback font)
• When a caption occurs in an unnumbered chapter, an exception aborts rendering (even

when number_separator style attribute is set to None)
• Handling of base template specified as string in a template configuration
• Table column widths entries now also accept fractions
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Part of the work included in this release was kindly sponsored by Joby Aviation.

10.3 Release 0.5.0 (2021-02-03)

New Features:
• Google Fonts: if a specified typeface is not installed, rinohtype attempts to download the

corresponding fonts from Google Fonts. Simply supply the font name as listed on https://-
fonts.google.com as a value for the typeface style property.

• Table: in addition to fixed and relative-width columns, you can indicate columns to be
automatically sized by specifying a value of ‘auto’ in the ‘column_widths’ style parameter
in your style sheet.

• docutils frontend: support the :align: option to table directives, which will override the
alignment set for the table in the style sheet.

• The starting number of enumerated lists in reStructuredText is respected.
• Table column widths can be specified in the style sheet, which take effect when these

haven’t been specified in the source document.
• Document elements now store where they have been defined (document tree, style sheet

file or template configuration file); when you specify relative paths (e.g. for images), they
are interpreted relative to the location of their source. This should make things more intu-
itive.

• The page_break style attribute is no longer reserved for sections; a page break can be
forced before any flowable.

• Enumerated list items with a hidden label (‘hide’ style attribute) are no longer counted in
the numbering.

• Templates and typefaces can be registered by name at runtime. This makes them referen-
cable from template configuration and style sheet files. For example, custom templates/-
typefaces can be imported in a Sphinx project’s conf.py (to be documented).

• It’s now possible to add arbitrary reStructuredText content to the front/back matter or
elsewhere by adding a .. container:: with the ‘out-of-line’ class and a :name: to reference it
by in the document template configuration, e.g. in the list of front matter flowables (to be
documented).

• Selectors in style sheet files (.rts) now support boolean and ‘None’ values. For example,
you can select StaticGroupedFlowables based on whether they have any children or not:
e.g TableCell(empty=true) selects empty table cells.

• The document’s title and author are now stored in the PDF metadata.
• “0” is now accepted as a valid value for Dimension-type attributes in style sheets and

template configurations.

Changed:
• Rendering speed was more than doubled (caching)! (PR #197 by Alex Fargus)
• Sphinx frontend: rinoh_documents now takes a list of dictionaries, one for each PDF docu-

ment to be built. This allows selecting e.g. the template and logo on a per-document level.
Support for rinoh_template, rinoh_stylesheet, rinoh_paper_size, rinoh_domain_indices
and rinoh_logo was removed. Fallback to latex_documents is retained. (PR #182, #192,
#195, #208 and #216 by Alex Fargus)

• The default stylesheet (‘Sphinx’) now prevents captions from being separated from their
image/table/code block (across pages).

• Font weights and widths are now internally represented by integer classes. In addition to
integer values, string values are still accepted (mapped to classes).

• OpenTypeFont now determines the font weight, slant and width from the file. For back-
ward compatibility, it still accepts these as arguments on instantiation but warns when
they don’t match the values stored in the font.

Fixed:
• Table column width determination was overhauled. Now fixed-width tables are supported
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and automatic-width columns should be handled better.
• The ‘nested bulleted/enumerated list’ selectors were broken; their corresponding styles

were never applied
• Items inside a table cannot be referenced (issue #174)
• Sphinx frontend: fix handling of relative image paths in .rst files inside a directory in the

Sphinx project root
• rinoh: fix –install-resources (broken since PyPI disabled XMLRPC searches)
• GroupedLabeledFlowables: respect label_min_width and fix a crash with respect to

space_below handling
• Duplicate rendering of content in columns; if content was too small to fill the first column,

it was rendered again in subsequent columns.
• Crash on encountering a style for which no selector is defined.

Part of the work included in this release was kindly sponsored by Joby Aviation.

10.4 Release 0.4.2 (2020-07-28)

New Features:
• before/after style attributes for StyledText (issue #158)
• docutils/Sphinx frontend: don’t abort on encountering math/math_block, output the

(LaTeX) math markup instead, along with printing a warning.
• docutils frontend: raw inline text (with :format: 'rinoh') is parsed as styled text

Fixed:
• crash when the ‘contents’ topic has multiple IDs (issue #173)
• loading of the references cache (issue #170)
• some issues with space_below handling

10.5 Release 0.4.1 (2020-07-01)

New Features:
• UserStrings: arbitrary user-defined strings that can be defined in the template configura-

tion or as a substitution definition in reStructuredText
• strings in a StringCollection can now be styled text
• Sphinx frontend: use the today and today_fmt configuration variables for the date on the

title page
• Sphinx frontend: allow extensions access to the builder object (issue #155)
• rinoh: --output writes the output PDF to a specified location

Fixed:
• Regression in handling images that don’t fit on the current page (issue #153)
• Fix crash when rendering local table of contents (issue #160)
• Sphinx frontend: support code-block/literalinclude with caption (issue #128)
• rinoh: variables set in a template configuration file are sometimes ignored (issue #164)
• Crash when using a font that contains unsupported lookups (issue #141)

10.6 Release 0.4.0 (2020-03-05)

New Features:
• automatically generated lists of figures and tables
• paragraphs now provide default tab stops (proportional to font size) for indentation
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• stylesheet (.rts) and template configuration (.rtt) files now support specifying inline and
background images (#107 and #108); to be documented

• it is now possible to specify selector priority (+-) in style sheets
• Sphinx frontend: the rinoh builder can be discovered by entry point (no more need to add

‘rinoh.frontend.sphinx’ to the list of extensions)
• rinoh: set a return code of 1 when one or more referenced images could not be found (issue

#104)
• rinoh: introduce the --install-resources option to control the automatic installation of

resources from PyPI
• German locale (contributed by Michael Kaiser)
• Polish locale (contributed by Mariusz Jamro)

Changed:
• Python 3.3 & 3.4 are no longer supported since they have reached end-of-life
• remove the dependency on purepng by embedding its png.py
• limit the width of images to the available width by default
• XML frontend: special case mixed content nodes
• fixes in the design of stylesheet/template code

Fixed:
• various regressions (PR #142 by Norman Lorrain)
• fix issues with variables defined in a base style sheet/template config
• various footnote rendering issues
• border width is also taken into account for flowables that are continued on a new page

(#127)
• Sphinx: handle case when source_suffix is a list (PR #110 by Nick Barrett)
• incompatibility with Sphinx 1.6.1+ (latex_paper_size)
• docutils: crash when a footnote is defined in an admonition (issue #95)
• docutils: crash on encountering a raw text role (issue #99)
• docutils: ‘decoration’ node (header/footer) is not yet supported (issue #112)
• crash when a table cell contains (only) an image
• colours of PNG images with gamma (gAMA chunk) set are incorrect (#102)
• Sphinx: image paths with wildcard extension are not supported (#119)
• GroupedFlowables: space_below should only be considered at the end
• adapt to PEP 479 (Change StopIteration handling inside generators), the default in Python

3.7 (issue #133)
• fix compatibility with Python 3.6.7 and 3.7.1 (tokenizer changes)
• fix crash caused by Python 3.8’s changes to int.__str__

10.7 Release 0.3.1 (2016-12-19)

New Features:
• rinoh is now also available as a stand-alone application for both Windows (installer) and

macOS (app); they include an embedded CPython installation
• index terms can be StyledText now (in addition to str)
• the ‘document author’ metadata entry can now be displayed using a Field
• Sphinx frontend: support the ‘desc_signature_line’ node (new in Sphinx 1.5)
• rinoh –docs: open the online documentation in the default browser

Changed:
• more closely mimic the Sphinx LaTeX builder’s title page (issue #60)
• there is no default for PageTemplate.chapter_title_flowables anymore since they are

specific to the document template
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Fixed:
• handle StyledText metadata (such as document title)
• Sphinx frontend: support the ‘autosummary_toc’ node
• DummyFlowable now sticks to the flowable following it (keep_with_next), so that (1) it

does not break this behavior of Heading preceding it, and (2) IndexTargets do not get sepa-
rated from the following flowable

• bug in LabeledFlowable that broke keep_with_next behavior
• the descender size of the last flowable in a GroupedFlowables with keep_with_next=True

was getting lost
• GroupedFlowables should not mark the page non-empty; this caused empty pages before

the first chapter if it is preceded by grouped DummyFlowables

10.8 Release 0.3.0 (2016-11-23)

New Features:
• support localization of standard document strings (en, fr, it, nl) (#53)
• localized strings can be overridden in the document template configuration
• make use of a fallback typeface when a glyph is not available (#55) (the ‘fallback’ style in

the Sphinx stylesheet sets the fallback typeface)
• template configuration (INI) files: specify which document parts to include, configure

document part and page templates, customize localized strings, …
• support specifying more complex selectors directly in a style sheet file
• (figure and table) captions support hierarchical numbering (see CaptionStyle)
• make the frontends independent of the current working directory
• reStructuredText: support the table :widths: option (upcoming docutils 0.13)
• Sphinx frontend: provide styles for Sphinx’s inline markup roles
• rinoh (command line renderer):

• support template configuration files
• support file formats for which a frontend is installed (see –list-formats)
• accept options to configure the frontend (see –list-options)
• option to list the installed fonts (on the command line or in a PDF file)

• show the current page number as part of the rendering progress indicator
• Book template: support for setting a cover page
• frontends: raise a more descriptive exception when a document tree node is not mapped
• validate the default value passed to an Attribute
• preliminary support for writing a style sheet to an INI file, listing default values for

non-specified attributes (#23)

Changed:
• rinoh: the output PDF is now placed in the current directory, not in the same directory as

the input file
• Sphinx builder configuration: replace the rinoh_document_template and rinoh_template_-

configuration options with rinoh_template
• if no base is given for a style, style attribute lookup proceeds to look in the style of the

same name in the base style sheet (#66)
• DEFAULT_STYLE can be used as a base style to prevent style attribute lookup in the style

of the same name in the base style sheet
• rename FieldList to DefinitionList and use it to replace uses (docutils and Sphinx fron-

tends) of the old DefinitionList (#54)
• the new DefinitionList (FieldList) can be styled like the old DefinitionList by setting

max_label_width to None, 0 or a 0-valued Dimension
• figures are now non-floating by default (float placement needs more work)
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• hide the index chapter when there are no index entries (#51)
• style sheets: use the default matcher if none is specified
• Sphinx style sheet: copy the admonition style from the Sphinx LaTeX builder
• Sphinx style sheet: keep the admonition title together with the body
• Sphinx style sheet: color linked references as in the LaTeX output (#62)
• Sphinx style sheet: disable hyphenation/ligatures for literal strong text
• no more DocumentSection; a document now consists of parts (containing pages)
• template configuration:

• refer to document part templates by name so that they can be replaced
• the list of document parts can be changed in the template configuration
• document parts take the ‘end_at_page’ option (left, right, or any)
• find (left/right) page templates via the document part name they belong to
• fall back to <doc_part>_page when the right or left template is not found
• each template configuration requires a name

• DocumentTree: make the source_file argument optional
• don’t abort when the document section hierarchy is missing levels (#67)
• use the PDF backend by default (no need to specify it)
• store the unit with Dimension instances (better printing)
• rename the float module to image

Fixed:
• improve compatibility with Windows: Windows path names and file encoding
• crash if a StyledText is passed to HeadingStyle.number_separator
• GroupedLabeledFlowables label width could be unnecessarily wide
• fix and improve automatic table column sizing
• Figures can now be referenced using the ‘reference’ format (“Figure 1.2”)
• HorizontallyAlignedFlowable: make more robust
• make document elements referenceable by secondary IDs
• reStructuredText: only the first classifier for a definition term was shown
• Sphinx frontend: support the ‘centered’ directive
• Sphinx frontend: basic support for the ‘hlist’ directive
• Sphinx frontend: handle :abbr: without explanation
• Sphinx frontend: support nested inline nodes (guilabel & samp roles)
• PDF backend: fix writing of Type 1 fonts from a parsed PDF file
• PDF reader: handle multi-page PDFs (#71)
• PDF reader: fix parsing of XRef streams
• PDF reader: fix writing of parsed files

10.9 Release 0.2.1 (2016-08-18)

New Features:
• optionally limit the width of large images and make use of this to simulate the Sphinx

LaTeX builder behavior (#46)
• reStructuredText/Sphinx: support for images with hyperlinks (#49)
• record the styled page numbers in the PDF as page labels (#41)
• unsupported Python versions: prevent installation where possible (sdist) or exit on import

(wheel)
• support Python 3.6

Bugfixes:
• make StyleSheet objects picklable so the Sphinx builder’s rinoh_stylesheet option can actu-

ally be used
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• Fix #47: ClassNotFound exception in Literal_Block.lexer_getter()
• Fix #45: Images that don’t fit are still placed on the page
• don’t warn about duplicate style matches that resolve to the same style

10.10 Release 0.2.0 (2016-08-10)

Styling:
• generate a style log (show matching styles) to help style sheet development
• keep_with_next style attribute: prevent splitting two flowables across pages
• stylesheets can be loaded from files in INI format
• check the type of attributes passed to styles
• source code highlighting using Pygments
• table of contents entries can be styled more freely
• allow hiding the section numbers of table of contents entries
• allow for custom chapter titles
• selectors can now also select based on document part/section
• various small tweaks to selectors and matchers
• various fixes relating to style sheets

Templates:
• configurable standard document templates: article and book
• a proper infrastructure for creating custom document templates
• support for left/right page templates
• make the Article template more configurable
• pages now have background, content and header/footer layers
• support for generating an index
• make certain strings configurable (for localization, for example)

Frontends:
• Sphinx: interpret the LaTeX configuration variables if the corresponding rinohtype vari-

able is not set
• Sphinx: roughly match the LaTeX output (document template and style sheet)
• added a CommonMark frontend based on recommonmark
• added basic ePUB and DocBook frontends
• XML frontends: fix whitespace handling
• frontends now return generators yielding flowables (more flexible)

Command-line Renderer (rinoh):
• allow specifying a template and style sheet
• automatically install typefaces used in the style sheet from PyPI

Fonts:
• typefaces are discovered/loaded by entry point
• more complete support for OpenType fonts
• fix support for the 14 base Type 1 fonts

Images:
• more versatile image sizing: absolute width/height & scaling
• allow specifying the baseline for inline images
• several fixes in the JPEG reader

Miscellaneous:
• reorganize the Container class hierarchy
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• fixes in footnote handling
• drop Python 3.2 support (3.3, 3.4 and 3.5 are supported)

10.11 Release 0.1.3 (2015-08-04)
• recover from the slow rendering speed caused by a bugfix in 0.1.2 (thanks to optimized

element matching in the style sheets)
• other improvements and bugfixes related to style sheets

10.12 Release 0.1.2 (2015-07-31)
• much improved Sphinx support (we can now render the Sphinx documentation)
• more complete support for reStructuredText (docutils) elements
• various fixes related to footnote placement
• page break option when starting a new section
• fixes in handling of document sections and parts
• improvements to section/figure/table references
• native support for PNG and JPEG images (drops PIL/Pillow requirement, but adds

PurePNG 0.1.1 requirement)
• new ‘sphinx’ stylesheet used by the Sphinx builder (~ Sphinx LaTeX style)
• restores Python 3.2 compatibility

10.13 Release 0.1.1 (2015-04-12)

First preview release
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